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Abstract. We present a relativistic model for a charged elastic sphere In equilibrium under 
its own gravitational and electrical repulsion. Equilibrium configurations of such systems 
imply that in addition to the usual condition of Bonnor a further condition is to be satisfied 
by the scalars of Rayner. 

1. Introduction 

Bonnor (1 965) has pointed out that a spherical body can remain in equilibrium under a 
balance of gravitational attraction and electrical repulsion. His solution shows that a 
spherically symmetric dust cloud of arbitrarily large mass and arbitrarily small radius 
can remain in equilibrium if the electric charge density and the mass density are equal 
in magnitude. 

In this paper we apply Rayner's theory of elasticity in general relativity to show that 
if the spherical body is elastic, equilibrium configuration implies that an extra condition 
must be imposed on the system. 

2. Solutions of the field equations 

The appropriate line element for a static spherically symmetric system is 

ds2 = f - 2 ( d r 2 + r 2  d02+r2  s in20d$2)+f2 dt2 (2.1) 
wheref(r) is a real function. The four-dimensional velocity vector u i  = dx'/ds is assumed 
to have u1 = U' = u3  = 0 since the sphere is static. It then follows from equation (2.1) 
that 

= f - 2 .  (2.2) 
The fluid is described by a density p ,  a four-velocity U'  = (U',  0. 0, 0), an elasticity 

tensor Cijkf and an electric current J '  = (J' ,  0,O. 0). In this paper we shall assume that 
the pressure vanishes. Then the stress-energy tensor T',is given by 

(2.3) T'k = T i k  + & k .  

T ' k  = P ' U k  - rg C&,, - g,OJ 

Here Tik is the energy-momentum tensor for the elastic matter (Rayner 1963): 

(2.4) 
' 1 i l  rs 

where the tensor Cjjkl admits the representation 
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(2.5) 
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g ,  = g i j + u i u j  is the metric for the deformed elastic body and is the metric for the 
undeformed elastic body ; @is taken as flat and the only non-vanishing components are 
(Roy and Singh 1973) : 

gY1 = -1, g:2 = - r 2 ,  g!, = - r 2  sin26 (2.6) 

and ctk is the electromagnetic energy tensor : 

(2.7) 
I = - ( p F '  F -16' F ,'S). 
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Here F i k  is the Minkowski electromagnetic field tensor : 

F. i k  = A .  i . k  - A  k . i  (2.8) 

where A i  is the four-potential. 

C3333 with the values 
The only non-vanishing components of CiJk[ are C, ,. C, 1 2 2 ,  C, 1 3 3 .  C 2 2 2 2  C 2 2 3 3 ,  

c 1 1 3 3  = \*r2 sin28, C l l l l  = \J+$, C, 2 2  = I+, 
(2.9) 

c2222 = 0 1 + 2 ~ ) r ~ ,  

Spherical symmetry requires only the radial component ofthe electric field, Fo' = - F'O, 
to be non-vanishing. This implies that A ,  = a(r), and A i  = A 2  = A ,  = 0. Then from 
equations (2.7) and (2.8) we have the nonzero components of etk : 

C 2 2 3 3  = vr4 sin28, C3333 = (v+2p)r4 sin40. 

coo = c 1  1 -  - - - e 2 *  = - c 3 ,  = ~ ' ~ / 8 7 1  (2.10) 

where a prime denotes differentiation with respect to r .  From equations (2.1). (2.2), (2.4) 
and (2.9) we have the nonzero components of : 

T o o  = p (2.1 1)  

? I 1  = -31 + f Z ) ( h + 2 p )  

T~~ = -31 +f2)(3v+2p) 

(2.12) 

(2.13) 

T 3 3  = - & I  +f2)(3\l+2p). (2.14) 

The Einstein-Maxwell field equations for the charged elastic matter are (Rayner 1963, 
Adler er a/ 1965): 

G', = - 8n(T'k + E i k )  (2.15) 

(2.16) 

(2.17) 

Here Gik is the Einstein tensor and g is the determinant of the metric tensor. In this paper 
we work in relativistic units throughout (c = 1 and K = 1 ;  K is the gravitational 
constant). 

Then from equations (2. l), (2.1 OH2.15) we obtain the field equations : 

- Goo = 2ff" - 3f" + 4ff ' / r  = 87cp + a'2 

G', = - f ' 2  = 4 ~ ( 1  +f2)(3v+2p)-d2 

G22 = G33 = 4 ~ ( 1  +f2)(3~j+2/2)+ar2 = f "  

(2.18) 

(2.19) 

(2.20) 
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from which we conclude that 

2ff” - 3f” + 4ff’/r = 87cp + a” 

f f 2  = a”-4n(1+f2)(3v+2jl) 

f ”  = af2+47c(1 +f2)(3v+2jl). 

(2.21) 

(2.22) 

(2.23) 

As noted earlier only Fo’ = -F’O is non-vanishing. This case satisfies equation (2.17) 
whereas equation (2.16) shows that Fo’ = Fo’(r). Then by equation (2.8) we conclude 
that A. = cl(r), in agreement with our earlier observation. 

Equations (2.22) and (2.23) imply that 

(1 +f2)(3v+2jl) = 0. 

But since f is a real function it follows that (1 +f’) # 0, so that (3v+2jl) = 0, or 

j l  = -3.. (2.24) 

Then equations (2.21)-(2.23) become 

2ff” - 3f” + 4ff’/r = 87cp + a” (2.25) 

f ”  = (2.26) 

f 12  = a12 (2.27) 

Bonnor (1 965) obtained these same equations, (2.25)-(2.27), for the case of a spherically 
symmetric dust cloud. He showed that such a system can remain in equilibrium if the 
electric charge density CT and the mass density p satisfy the condition 

C T =  f p .  (2.28) 

It then follows that a spherically symmetric elastic dust cloud can remain in equilibrium 
if both the conditions (2.24) and (2.28) are satisfied. 

3. Conclusion 

Our solution shows that a spherically symmetric elastic matter fluid can remain in 
equilibrium if  the conditions (2.24) and (2.28) are satisfied. 
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